PAPER - II

MEASURES OF DISPERSION

- 1.- Coefficient of VariationPg 01
- 2.- Correction Of Mean & SDPg 04

SKEWNESS

1.– Karl Pearson's Coefficient of Skewness

.....Pg 10

2.- Bowley's Coefficient of Skewness

....Pg 15

MOMENTS

.....Pg 19

KURTOSIS

.....Pg 28

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = \sqrt{\frac{\sum x^2 - \overline{x}^2}{n}^2}$$

$$CV = \frac{\sigma}{\overline{x}} \times 100$$

- **Q1.** Find CV : 3 , 5 , 7 , 9 , 11 ans: σ = 2.829 , CV = 40.14%
- **Q2.** Find CV : 20 22 19 23 26 **ans** :σ = 2.452 , CV = 11.15%
- **Q3.** Find CV : 10 20 18 12 15 **ans** :σ = 3.689 , CV = 24.59%
- **Q4.** Find CV : 35 , 40 , 20 , 45 , 30 ans: σ = 8.602 , CV = 25.3%
- **Q5.** Find CV : 35 , 40 , 20 , 45 , 30 **ans** :σ = 6.722 , CV = 29.2 %
- Q6. Calculate the coefficient of variation
 15, 16, 18, 18, 19, 20, 20,
 21, 21, 22
 ans: x = 19; σ = 2.145; CV =11.29 %

Q7.

Firm	А	В
No of employees	586	647
Mean Salary	52.5	47.5
S.D. of Salary	10	11
Which firm is homogen	ous with	n respect to

payment of wages

COEFFICIENT OF VARIATION

Q1. Calculate the coefficient of variation

STEP 1 :

х	x – x	$(x - x)^2$
3	-4	16
5	2	4
7	0	0
9	2	4
11	4	16
35		40
<u> </u>	∇u	_ 25

$\overline{\mathbf{x}} = \underline{\sum} \mathbf{x} = \underline{35} = 7$

STEP 2 :

σ	=	$\sum (x - \overline{x})^2$
		n
	=	40
		5

taking log on both sides

$$\log \sigma = \frac{1}{2} (\log 8)$$
$$= \frac{1}{2} (0.9031)$$

$$\log \sigma = 0.4516$$

$$\sigma$$
 = AL(0.4516)
= 2.829

STEP 3 :

$$CV = \frac{\sigma}{x} \times 100$$
$$= \frac{2.829}{7} \times 100$$
$$= \frac{282.9}{7}$$
$$= 40.41\%$$

Q2. Price of a certain commodity for the last 5 years in city A is given below

20 22 19 23 26 STEP 1:

x	x – x	$(x - x)^2$
20	- 2	4
22	0	0
19	- 3	9
23	1	1
26	4	16
110		30
x =	$\frac{\sum x}{n}$	$= \frac{110}{5} = 22$
	-	

STEP 2:

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$
$$= \sqrt{\frac{30}{5}} = \sqrt{6}$$

taking log on both sides

 $\log \sigma = \frac{1}{2}(\log 6)$ = <u>1</u> (0. 7782) 2 $= \frac{0.7782}{2}$ $\log \sigma = 0.3896$ $\sigma = AL(0.3896)$ = 2.452

STEP 3 :

 $CV = \frac{\sigma}{x} \times 100$ С $= \frac{2.452}{22} \times 100$ = 245.2 22 = 11.15% = 24.59%

Q3. Price of a certain commodity for the last 5 years in city A is given below

> 10 20 18 12 15

STEP 1 :

	х	x – x	(x – x)2	
	10	- 5	5 25		
	20 5 2				
	18	3	9		
	12	-3	9		
	15	0	0		
•	75		68		
	x =	Σx	= 75	= 15	

 $\frac{\sum x}{n}$ = <u>75</u> = Х

STEP 2 :

$$\sigma = \sqrt{\frac{\sum(x - \overline{x})^2}{n}}$$
$$= \sqrt{\frac{68}{5}} = \sqrt{13.6}$$

taking log on both sides

$$\log \sigma = \frac{1}{2} (\log 13.6)$$

$$= \frac{1}{2} (1.1335)$$

$$= \frac{1.1335}{2}$$

$$\log \sigma = 0.5668$$

$$\sigma = AL (0.5668)$$

$$= 3.689$$
STEP 3 :
$$CV = \frac{\sigma}{x} \times 100$$

Q5. Calculate the coefficient of variation

Q4	4 . Co	alculate t	he coef	ficient	of var	iation
	STEP 1	35,4 i•	0,20	, 45 ,	30	
	X	x – x	$(x - x)^2$			
-	35	1	1			
	40	6	36			
	20	-14	196			
	45	11	121			
	30	-4	16			
-	170		370			
	<u>x</u> =	$\underline{\sum x} = \underline{x}$	$\frac{170}{5}$ =	34		
	STEP 2	2:	5			
	σ =	$\sum (x - \overline{x})^2$	2			
		n				
	=	<u>370</u> 5	= \	74		
	takin	g log on l	ooth sid	es		
	log σ	$= \frac{1}{2} (\log \theta)$	74)			
		$= \frac{1}{2} (1.8)$	3692)			
		= <u>1.8692</u>	2			
	log σ	= 0.9346	5			
	σ	= AL(0.9	346)			
		= 8.602				
	STEP 3	3:				
	CV	$= \frac{\sigma}{x} x$	100			
		$= \frac{8.602}{34}$	x 100			
		= 860.2	-	= 25.	3%	

5 . Co	alculate ti	ne coei	fficient of v
	16 , 1	8,21	,25 , 35
STEP 1 ×	1 : x – x	(x – x) ²	2
16	- 7	49	
18	- 5	25	
21	- 2	4	
25	2	4	
35	12	144	
115		226	_
x =	$\underline{\sum x} = \underline{1}$	15 =	23
STEP 2	2:	J	
σ =	$\frac{\sum (x - \overline{x})^2}{n}$		
=	<u>226</u> 5	=	45.2
takin	g log on b	ooth sic	les
log σ	$r = \frac{1}{2}(\log \frac{1}{2})$	45.2)	
	= <u>1</u> (1.6	551)	
	= <u>1.6551</u> 2	_	
log σ	= 0.8275	5	
σ	= AL(0.8	275)	
	= 6.722		
STEP 3	3:		
CV	$= \frac{\sigma}{x} x$	100	
	$= \frac{6.722}{23}$	x 100	
	= <u>672.2</u> 23		= 29.2 %

Q6. Calculate the coefficient of variation 15, 16, 18, 18, 19, 20, 20, 21, 21, 22 ans: $\overline{x} = 19$; $\sigma = 2.145$; CV =11.29 %

Q7.

А	В
586	647
52.5	47.5
10	11
	A 586 52.5 10

Which firm is homogenous with respect to payment of wages

%

Firm A :

$$CV = \frac{\sigma}{x} \times 100$$
$$= \frac{10}{52.5} \times 100$$
$$= \frac{1000}{52.5} = 19.04$$

Firm B :

$$CV = \frac{\sigma}{x} \times 100$$
$$= \frac{11}{47.5} \times 100$$
$$= \frac{1100}{47.5} = 23.15\%$$

Since CV (A) < CV(B) , firm A is more homogenous with respect to payment of wages

CORRECTION OF MEAN & STANDARD DEVIATION

01.

the mean and standard deviation of 100 observations were found to be 6 and 2 respectively. If at the time of calculation, one observation was wrongly taken as 17 instead of 7. Find the correct standard deviation

02.

the mean and standard deviation of set of 100 observations were worked out as 40 and 5 respectively by computer who by mistake took the value 50 in place of 40 for one of the observation. Find the corrected mean and standard deviation

03.

the mean and the variance of 12 items are 22 and 9 respectively. Later it was found that an item 32 was wrongly taken as 23. Compute the correct mean and variance

04.

The mean and standard deviation of 9 items are 43 and 5 respectively . If an item of value 3 is added to the set find the mean and variance of the 10 items

05.

in a series of 5 observations , the value of mean and variance is 3 and 2 . If three observations are 1 , 3 & 5 find the remaining two

06.

in a series of 5 observations , the value of mean and variance is 4.4 and 8.24 . If three observations are 1 , 2 & 6 find the remaining two

the mean and standard deviation of 100 observations were found to be 6 and 2 respectively. If at the time of calculation, one observation was wrongly taken as 17 instead of 7. Find the correct standard deviation

 \overline{x} = 6 & σ = 2 , n = 100 incorrect x = 17 , correct x = 7

 $\frac{\text{STEP 1}: \text{CORRECTION OF MEAN}}{x} = \underline{\Sigma x}$

$$6 = \frac{\sum x}{100}$$

 $\sum x = 600$ - incorrect x - 17 $\frac{+ \text{ correct } x + 7}{\sum x \text{ correct }} = 590$ $\overline{x}_{\text{correct}} = \frac{\sum x}{n}$ $= \frac{590}{100}$ = 5.9

STEP 2 : CORRECTION OF S.D. $\sigma = \sqrt{\frac{\sum x^2}{n} - \overline{x}^2}$ $\sigma^2 = \frac{\sum x^2}{n} - \overline{x}^2$ $\sum x^2 = n(\sigma^2 + \overline{x}^2)$ $= 100(2^2 + 6^2)$ = 100(4 + 36) = 4000Now $\sum x^2 = 4000$ = 1000

- incorrect x^2 - 289 + correct x^2 + 49 Σx^2 correct = 3760 $\sigma \text{ correct} = \sqrt{\frac{\Sigma x^2}{n} - \frac{x}{x}^2} \underbrace{-\frac{x}{x}^2}_{\text{CORRECT MEAN}}$ $= \sqrt{\frac{3760}{100} - 5.9^2}$ $= \sqrt{37.60 - 34.81}$ $= \sqrt{2.79}$ taking log on both sides $\log \sigma = \frac{1}{2}(\log 2.79)$ $= \frac{1}{2}(0.4456)$ $= \frac{0.4456}{2}$ $\log \sigma = 0.2228$ $\sigma \text{ correct} = AL(0.2228)$

= 1.670

the mean and standard deviation of set of 100 observations were worked out as 40 and 5 respectively by computer who by mistake took the value 50 in place of 40 for one of the observation . Find the corrected mean and standard deviation

 $\overline{x} = 40$, $\sigma = 5$, n = 100incorrect x = 50, correct x = 40

STEP 1 : CORRECTION OF MEAN $\overline{x} = \underline{\sum x}$

$$40 = \frac{\sum x}{100}$$

Σx = 4000 - incorrect x - 50 +correct x + 40 $\Sigma x \text{ correct} = 3990$ ×correct $= \frac{\sum x}{n}$ = <u>3990</u> 100

STEP 2 : CORRECTION OF S.D.

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \frac{x^2}{x^2}}$$

$$\sigma^2 = \frac{\sum x^2}{n} - \frac{x^2}{x^2}$$

$$\sum x^2 = n(\sigma^2 + \overline{x}^2)$$

$$= 100(5^2 + 40^2)$$

$$= 100(25 + 1600)$$

$$= 162500$$
Now
$$\sum x^2 = 162500$$

$$- \text{ incorrect } x^2 - 2500$$

+ correct x^2

 Σx^2 correct

2500

1600

= 161600

+

$$\sigma_{\text{correct}} = \sqrt{\frac{\sum x^2}{n} - \frac{1}{x^2}}$$
$$= \sqrt{\frac{161600}{100} - 39.9^2}$$
$$= \sqrt{1616 - 1592.01}$$
$$= \sqrt{23.99}$$

taking log on both sides

$$\log \sigma = \frac{1}{2} (\log 23.99)$$

$$= \frac{1.3801}{2}$$

$$= 0.69005$$

$$\log \sigma = 0.6901$$

$$\sigma \text{ correct} = AL(0.6901) = 4.899$$

the mean and the variance of 12 items are 22 and 9 respectively . Later it was found that an item 32 was wrongly taken as 23 . Compute the correct mean and variance.

 $\overline{x} = 22$, $\sigma^2 = 9$, n = 12incorrect x = 23, correct x = 32

STEP 1 : CORRECTION OF MEAN

 $\overline{x} = \frac{\sum x}{n}$ $22 = \frac{\sum x}{12}$ $\sum x = 264$ - incorrect x = 23 $\frac{+\text{correct } x + 32}{\sum x \text{ correct } = 273}$ $\overline{x}_{\text{correct}} = \frac{\sum x}{n}$ $= \frac{273}{12}$ = 22.75

STEP 2 : CORRECTION OF S.D.

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \frac{x}{x^2}}$$

$$\sigma^2 = \frac{\sum x^2}{n} - \frac{x}{x^2}$$

$$\sum x^2 = n(\sigma^2 + \frac{x}{x^2})$$

$$= 12(9 + 22^2)$$

$$= 12(9 + 484)$$

$$= 12(493)$$

$$= 5916$$
Now

 $\Sigma x^{2} = 5916$ $- \text{ incorrect } x^{2} - 529$ $+ \text{ correct } x^{2} + 1024$ $\Sigma x^{2} \text{ correct} = 6411$

$$\sigma \text{correct} = \sqrt{\frac{\sum x^2}{n} - \frac{x^2}{x^2}} \text{CORRECT MEAN}$$

$$\sigma^2$$
 correct = $\sum_{n} x^2 - \overline{x}^2$

variance =
$$\frac{6411}{12} - 22.75^2$$

= 16.6875

σnew

$$= \sqrt{\frac{\sum x^2}{n} - \frac{x^2}{x^2}}$$
NEW MEAN

The mean and standard deviation of 9 items are 43 and 5 respectively. If an item of value 3 is added to the set find the mean and variance of the 10 items .

$$\bar{x} = 43$$
, $\sigma = 5$, $n = 9$
new x added = 3,
STEP 1 : NEW MEAN

$$\overline{x} = \underline{\sum x} \\ n$$

$$43 = \underline{\sum x} \\ 9$$

$$\Sigma x = 387$$

$$\frac{+new x + 3}{\Sigma x new} = 390$$

$$\overline{x}_{new} = \underline{\sum x} \\ n$$

$$= \frac{390}{10}$$

$$= 39$$

STEP 2 : CORRECTION OF S.D.

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \frac{x}{x^2}}$$

$$\sigma^2 = \frac{\sum x^2}{n} - \frac{x}{x^2}$$

$$\sum x^2 = n(\sigma^2 + \frac{x}{x^2})$$

$$= 9(5^2 + 43^2)$$

$$= 9(25 + 1849)$$

$$= 9(1874)$$

$$= 16866$$
Now
$$\sum x^2 = 16866$$

9 $+ \text{ new } x^2$ + Σx^2 new = 16875

$$\sigma^2 new = \frac{\sum x^2}{n} - \overline{x}^2$$

=

variance = $16875 - 39^2$ 10

= 1687.5 - 1521

= 166.5

in a series of 5 observations , the value of mean and variance is 3 and 2 . If three observations are 1 , 3 & 5 find the remaining two

let the other 2 observations be a & b

$$x = \sum_{n} \frac{x}{n}$$

$$3 = \frac{1+3+5+a+b}{5}$$

$$15 = 9+a+b$$

$$a + b = 6$$

$$\therefore b = 6-a \dots (1)$$

$$\sigma = \sqrt{\sum_{n} x^{2}} - \overline{x^{2}}$$

$$\sigma^{2} = \frac{\sum_{n} x^{2}}{n} - \overline{x^{2}}$$

$$2 = \frac{1+9+25+a^{2}+b^{2}}{5} - 9$$

$$11 = \frac{35+a^{2}+b^{2}}{5} - 9$$

$$11 = \frac{35+a^{2}+b^{2}}{5}$$

$$55 = 35+a^{2}+b^{2}$$

$$a^{2}+b^{2} = 20$$

$$a^{2}+(6-a)^{2} = 20 \quad \text{from (1)}$$

$$a^{2}+36-12a+a^{2} = 20$$

- 32

06.

in a series of 5 observations , the value of mean and variance is 4.4 and 8.24 . If three observations are 1 , 2 & 6 find the remaining two

let the other 2 observations be a & b

$$x = \sum_{n} \frac{x}{n}$$
4.4 = $\frac{1+2+6+a+b}{5}$
22 = $9+a+b$
a + b = 13
 $\therefore b = 13-a$ (1)
 $\sigma = \sum_{n} \frac{x^2}{n} - \overline{x^2}$
 $\sigma^2 = \sum_{n} \frac{x^2}{n} - \overline{x^2}$
8.24 = $\frac{1+4+36+a^2+b^2}{5}$ - 4.4²
8.24 = $\frac{41+a^2+b^2}{5}$ - 19.36
27.6 = $\frac{41+a^2+b^2}{5}$
138 = $41+a^2+b^2$
a² + b² = 97
a² + (13-a)² = 97 from (1)
a² + 169 - 26a + a² = 97
2a² - 26a + 72 = 0
a² - 13a + 36 = 0
a = 9 a = 4
b = 13 - a b = 13 - a
b = 4 b = 9
 \therefore the other two observations are 4 & 9

 \therefore the other two observations are 2 & 4

b = 4

= 0

a = 2

b = 6 - a

a² - 6a + 8

b = 6 - a

b = 2

a = 4

<u>SKEWNESS</u>

In symmetrical distribution the mean and mode coincide

But in skewed distribution , they don't and hence the difference between them measures the amount of skewness

Measure of skewness = Mean - Mode

Coefficient of skewness ;

$$SKp = \frac{Mean - Mode}{\sigma}$$

However if Mode is ill – defined , we make use of empirical relationship between Mean – Median – Mode

Mean - Mode = 3(Mean - Median)

In that case $SKp = 3(Mean - Median) = \sigma$

KARL PEARSON'S COEFF. OF SKEWNESS

- Q1. Find Karl Pearson's coefficient of
 skewness : 6 , 5 , 7 , 0 , 2
 ans : Skp = -1.15
- Q2. Find Karl Pearson's coefficient of skewness: 9,6,5,11,13,12,14 ans: Skp = 3.21
- **Q3.** Find Karl Pearson's coefficient of skewness: n = 10; $\Sigma x = 450$; $\Sigma x^2 = 24250$; Mode = 43 **ans**: Skp = 0.1
- Q4. For a moderately skewed distribution
 Mean = 200 ; median = 198.4 , SD = 16
 Find mode and the Pearsons coefficient
 of skewness (SKp) ans : Skp = 0.3
- Q5. the mean & variance of a distribution are 50 and 400 respectively. Find the mode and the median if SKp = -0.4 ans : mode = 58 & median = 52.67
- Q6. SKp = -0.4 ; SD = 20 ; CV = 40%. Find mean ; median & mode ans : 50 , 52.67 , 58
- Q7. for moderately skewed distribution mean = 40 ; karlpearsons coefficient of skewness is 0.1 & coeff. Of variation is 20% . Find mode
- Q8. Mean = 200, coefficient of variation is 8% and Karl Persons's coefficient of skewness (SKp) = 0.3. Find mode & median ans: mode = 195.2 & median = 198.4
- Q9. SKp = 0.06 ; mean = 150 ; var. = 2500
 Find : median ; mode & CV
 ans : 149 , 147 , 33.33%

SOLUTION SET

- Q1. Find Karl Pearson's coefficient of skewness : 6 , 5 , 7 , 0 , 2
- STEP 1: MEAN

$$\overline{x} = \underline{\Sigma x}_{N} = \underline{20}_{5} = 4$$

STEP 2 : MEDIAN

Obs no.	:	1	2	3	4	5
Value	:	0	2	5	6	7

- Median = value of $\frac{N+1}{2}$ observation
 - value of 3rd observation
 5

STEP 3 : STANDARD DEVIATION

х	$x - \overline{x}$	$(x - x)^2$
0	-4	16
2	-2	4
5	1	1
6	2	4
7	3	9
	0	34

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$
$$= \sqrt{\frac{34}{5}}$$

taking log on both sides

 $\log \sigma = \frac{1}{2} (\log 6.8)$ $= \frac{1}{2} (0.8325)$ $= \frac{0.8325}{2}$ $\log \sigma = 0.4163$

 $\sigma = AL(0.4163)$

= 2.608

= 2.61

STEP 4 : KARL PERASON COEFF. OF SKEWNESS

Skp =
$$\frac{3(Mean - Median)}{\sigma}$$

= $\frac{3(4 - 5)}{2.61}$
= $-\frac{3}{2.61}$
= $-\frac{300}{261}$ = -1.15

Q2. Find Karl Pearson's coefficient of skewness: 9,6,5,11,13,12,14

STEP 1: MEAN

$$\overline{\mathbf{x}} = \underline{\sum \mathbf{x}}_{\mathbf{N}} = \underline{70}_{\mathbf{T}} = 10$$

STEP 2 : MEDIAN

Obs no.:	1	2	3	4	5	6	7
Value :	5	6	9	11	12	13	14

Median = value of $\frac{N + 1}{2}$ observation

= value of 4^{TH} observation

STEP 3 : STANDARD DEVIATION

х	$x - \overline{x}$	$(x - x)^2$
5	-5	25
6	-4	16
9	-1	1
11	1	1
12	2	4
13	3	9
14	4	16
	0	72
σ =	$\frac{\sum (x - \overline{x})^2}{n}$ $\frac{72}{7}$	= \10.29

taking log on both sides

$$\log \sigma = \frac{1}{2} (\log 10.29)$$

$$= \frac{1}{2} (1.0123)$$

$$= \frac{1.0123}{2}$$

$$\log \sigma = 0.5062$$

$$\sigma = AL(0.5062)$$

$$= 3.207$$

= 3.21

STEP 4 : KARL PERASON COEFF. OF SKEWNESS

Skp =
$$\frac{3(Mean - Median)}{\sigma}$$

= $\frac{3(10 - 11)}{3.21}$
= $-\frac{3}{3.21}$
= $-\frac{300}{321}$
= -0.93

Q3. Find Karl Pearson's coefficient of skewness : n = 10; $\Sigma x = 450$; $\Sigma x^2 = 24250$; STEP 2 :KARL PERASON COEFF. OF SKEWNESS

Mode = 43

STEP 1 : MEAN

$$\overline{\mathbf{x}} = \underline{\sum \mathbf{x}}_{\mathrm{N}} = \frac{450}{10} = 45$$

STEP 2 : STANDARD DEVIATION

$$Skp = \frac{Mean - Mode}{\sigma}$$
$$= \frac{45 - 43}{20}$$
$$= \frac{2}{20}$$

= 0.1

Q4. For a moderately skewed distribution Mean = 200 ; median = 198.4 , SD = 16 Find mode and the Pearsons coefficient of skewness (SKp)

STEP 1 : MODE

Mean – mod	e =	3(mean - median)
200 – mode	=	3(200 - 198.4)
200 – mode	=	3(1.6)
200 – mode	=	4.8
mod	de	= 200 - 4.8
		= 195.2

Skp =
$$\frac{3(Mean - Median)}{\sigma}$$

= $\frac{3(200 - 198.4)}{16}$
= $\frac{3(1/6)}{16}$ = $\frac{3}{10}$ = 0.3

STEP 3 : KARL PERASON COEFF. OF SKEWNESS

Q5. the mean & variance of a distribution are 50 and 400 respectively. Find the mode and the median if SKp = -0.4

Mean = 50 , σ^2 = 400 , SKp = -0.4

STEP 1 : MODE

 $SkP = \frac{Mean - Mode}{\sigma}$ $-0.4 = \frac{50 - Mode}{\sigma}$

20

-8 = 50 - Mode

Mode = 50 + 8

= 58

STEP 2 : MEDIAN

Mean - mode = 3(mean - median) 50 - 58 = 3(50 - median) $-\frac{8}{3} = 50 - \text{median}$ -2.67 = 50 - median

median = 52,67

Q6. SKp = -0.4; SD = 20; CV = 40%. Find mean; median & mode

STEP 1 : MEAN

$$CV = \frac{\sigma}{x} \times 100$$
$$40 = \frac{20}{x} \times 100$$

$$\overline{x}$$
 = 20×100 = 50
40

STEP 2 : MODE

 $Sk_P = Mean - Mode \sigma$

 $-0.4 = \frac{50 - Mode}{20}$

-8 = 50 - Mode

Mode = 50 + 8 Mode = 58

STEP 3 : MEDIAN

Mean - mode = 3(mean - median) 50 - 58 = 3(50 - median) $-\frac{8}{3} = 50 - \text{median}$ -2.67 = 50 - medianmedian = 52,67

Q7. for moderately skewed distribution
 mean = 40 ; karlpearsons coefficient of
 skewness is 0.1 & coeff. of variation is
 20% . Find mode

STEP 1 : SD

$$CV = \frac{\sigma}{x} \times 100$$

$$20 = \frac{\sigma}{40} \times 100$$

σ = 8

- STEP 2 : MODE
- $Sk_P = \frac{Mean Mode}{\sigma}$

$$0.1 = \frac{40 - \text{Mode}}{8}$$

0.8 = 40 - Mode

Mode = 40 - 0.8

Mode = 39.2

STEP 3 : MEDIAN

Mean-mode = 3(mean - median) 40-39.2 = 3(40 - median) 0.8 = 3(40 - median) 0.27 = 40 - median median = 40 - 0.27 = 39.73 Q8. Mean = 200, coefficient of variation is 8% and Karl Persons's coefficient of skewness (SKp) = 0.3. Find mode & median

$$CV = \frac{\sigma}{x} \times 100$$

 $8 = \frac{\sigma}{200} \times 100$

 $\sigma = 16$

STEP 2 : MODE

 $Sk_P = \frac{Mean - Mode}{\sigma}$

 $0.3 = \frac{200 - Mode}{16}$

4.8 = 200 - Mode

Mode = 200 - 4.8

Mode = 195.2

STEP 3 : MEDIAN

Mean-mode = 3(mean - median) 200-195.2 = 3(200 - median) 4.8 = 3(200 - median) 1.6 = 200 - median median = 200 - 1.6 median = 198.4

Q9.

SKp = 0.06 ; mean = 150 ; variance = 2500 Find : median ; mode & CV

STEP 1: MODE

Skp	=	Mean - Mode o	e (given σ ² = 2500)
0.06	=	<u>150 - Mode</u> 50	,
<u> </u>	=	<u>150 – Mode</u> 50	

3 = 150 - Mode Mode = 150 - 3 Mode = 147 STEP 2: MEDIAN Mean - mode = 3(mean - median) 150 - 147 = 3(150 - median) 3 = 3(150 - median) 1 = 150 - median median = 150 - 1 median = 149 STEP 3: CV

$$CV = \frac{\sigma}{x} \times 100$$
$$= \frac{50}{150} \times 100$$

SKEWNESS

BOWLEY'S COEFFICIENT OF SKEWNESS

In symmetrical distribution the quartiles are equidistant from the median

$$Q_2 - Q_1 = Q_3 - Q_2$$

But in skewed distribution ,

the quartiles will not be equidistant from the median and hence the difference between them will measure the amount of skewness Bowley's absolute measure of skewness

$$= (Q_3 - Q_2) - (Q_2 - Q_1)$$
$$= Q_3 + Q_1 - 2Q_2$$

Bowley's coefficient of skewness

$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$ $= Q_3 + Q_1 - 2M$

Q3 – Q1

Q SET

01.

The lower and upper quartiles are 15 and 21 respectively and its median is 17 . Find Bowley's coefficient of skewness . **ans :** SKB = 0.33

02.

For a frequency distribution ; $Q_3 - Q_2 = 40 \& Q_2 - Q_1 = 60$. Find SKB **ans** : SKB = -0.2

03.

For a frequency distribution ; $Q_3 - Q_2 = 100 \& Q_2 - Q_1 = 120$. Find SKB **ans** : SKB = 0.09

- 04. Find Bowley's coefficient of skewness
- a) 168, 164, 172, 169, 178, 173, 173
- b) 29,12,24,19,26,36,35,21,33
- c) 160 , 158 , 153 , 161 , 152 , 157 , 162 , 159 , 156 , 165

ans: $SK_B = a$) - 0.6 b) 0.14 c) - 0.083

05.

for a frequency distribution , Bowley's coefficient of skewness is -0.8. If $Q_1 = 44.1$ and $Q_3 = 56.6$, find the median of the distribution

ans: M = 55.35

06.

Bowley's coefficient of skewness is 0.6.

The sum of upper and lower quartiles is 100 and the median is 38 . Find the upper and lower quartiles

ans: $Q_1 = 30$; $Q_3 = 70$

07.

if median , first quartile and coefficient of quartile deviation of distribution are 18.5 , 14.5 and 0.275 respt. Calculate Bowley's coefficient of skewness **ans :** SK_B = 0.27

The lower and upper quartiles are 15 and 21 respectively and its median is 17 . Find Bowley's coefficient of skewness .

$$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$
$$= \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$
$$= \frac{21 + 15 - (2(17))}{21 - 15}$$
$$= \frac{36 - 34}{6}$$
$$= \frac{2}{6}$$
$$= 0.33$$

02.

For a frequency distribution ; $Q_3 - Q_2 = 40 \& Q_2 - Q_1 = 60$. Find SKB

$$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$

$$= \frac{40 - 60}{40 + 60}$$
$$= \frac{-20}{100}$$
$$= -0.2$$

03.

For a frequency distribution ;

 Q_3-Q_2 = 100 & Q_2-Q_1 = 120 . Find SK_B

$$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)} = \frac{-3}{5}$$
$$= \frac{100 - 120}{100 + 120} = -0.6$$

= _ 20 220 = - 111

= 0.09

04. Find Bowley's coefficient of skewness

$$\frac{1}{164} = \frac{2}{168} = \frac{3}{168} = \frac{3}{168} = \frac{1}{168} = \frac{1}$$

$$q_2 = N + 1 = 8 = 4$$

2 2

q₃ =
$$\frac{3(N + 1)}{4}$$
 = 3(2) = 6

 Q_3 = value of the 6th observation = 173

$$Q_3 - Q_2 = 173 - 172 = 1$$

$$Q_2 - Q_1 = 172 - 168 = 4$$

$$SK_B = (Q_3 - Q_2) - (Q_2 - Q_1)$$

$$(Q_3 - Q_2) + (Q_2 - Q_1)$$

$$= \frac{1-4}{1+4}$$
$$= -\frac{3}{5}$$

- 16 -

b) 29, 12, 24, 19, 26, 36, 35, 21, 33
1 2 3 4 5 6 7 8 9
12 19 21 24 26 29 33 35 36
STEP 1:

$$q_1 = \frac{N+1}{4} = \frac{10}{4} = 2.5$$

 $Q_1 = value of the 2.5^{th} observation$
 $= 19 + 0.5(21 - 19)$
 $= 19 + 0.5(2)$
 $= 19 + 1 = 20$
 $q_2 = \frac{N+1}{2} = \frac{10}{2} = 5$
 $Q_2 = value of the 5^{th} observation$
 $= 26$
 $q_3 = \frac{3(N+1)}{4} = 3(2.5) = 7.5$
 $Q_3 = value of the 7.5^{th} observation$
 $= 33 + 0.5(35 - 33)$
 $= 34$

STEP 2:

 $Q_3 - Q_2 = 34 - 26 = 8$ $Q_2 - Q_1 = 26 - 20 = 6$ $SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$

$$= \frac{8-6}{8+6}$$
$$= \frac{2}{14}$$
$$= \frac{1}{7}$$

= 0.14

c) 160, 158, 153, 161, 152, 157, 162, 159, 156, 165 <u>1 2 3 4 5 6 7</u> 152 153 156 157 158 159 160 8 9 10 161 162 165 STEP 1: q1 = $\frac{N+1}{4}$ = $\frac{11}{4}$ = 2.75 Q_1 = value of the 2.75th observation = 153 + 0.75(56 - 53)= 153 + 0.75(3)= 153 + 2.25 = 155.25 = <u>N + 1</u> = <u>11</u> = 5.5 q2 Q_2 = value of the 5.5th observation = 158 + 0.5(159 - 158)= 158 + 0.5(1)= 158 + 0.5 = 158.5 q₃ = $\frac{3(N + 1)}{4}$ = 3(2.75) = 8.25 Q_3 = value of the 8.25th observation = 161 + 0.25(162 - 161)= 161 + 0.25(1)= 161 + 0.25= 161.25

STEP 2:

$$Q_3 - Q_2 = 161.25 - 158.5 = 2.75$$

 $Q_2 - Q_1 = 158.5 - 155.25 = 3.25$

$$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$
$$= \frac{2.75 - 3.25}{2.75 + 3.25}$$
$$= \frac{-0.5}{6}$$
$$= -0.083$$

for a frequency distribution , Bowley's coefficient of skewness is -0.8 . If $Q_1 = 44.1$ and $Q_3 = 56.6$, find the median of the distribution

$$SK_{B} = \frac{(Q_{3} - Q_{2}) - (Q_{2} - Q_{1})}{(Q_{3} - Q_{2}) + (Q_{2} - Q_{1})}$$

$$SK_{B} = \frac{Q_{3} + Q_{1} - 2M}{Q_{3} - Q_{1}}$$

$$-0.8 = \frac{56.6 + 44.1 - 2M}{56.6 - 44.1}$$

$$-0.8 = \frac{100.7 - 2M}{12.5}$$

$$-10 = 100.7 - 2M$$

$$2M = 110.7$$

$$M = 55.35$$

06.

Bowley's coefficient of skewness is 0.6.

The sum of upper and lower quartiles is 100 and the median is 38 . Find the upper and lower quartiles

$$Q_3 + Q_1 = 100$$
; M = 38; SK_B = 0.6

$$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$

$$SK_B = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$

$$0.6 = \frac{100 - 2(38)}{Q_3 - Q_1}$$

2 Q3

$$Q_{3} - Q_{1} = \frac{100 - 76}{0.6}$$

$$Q_{3} - Q_{1} = \frac{24}{0.6} = \frac{240}{6} = 40$$
Now $Q_{3} + Q_{1} = 100$

$$Q_{3} - Q_{1} = 40$$

= 140

07.

if median , first quartile and coefficient of quartile deviation of distribution are 18.5 , 14.5 and 0.275 respt. Calculate Bowley's coefficient of skewness $Q_1 = 14.5$, M = 18.5, coeff of Q.D. = 0.275

coeff of Q.D. = 0.275

$$\frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{275}{1000} \frac{11}{40}$$

$$40Q_3 - 40Q_1 = 11Q_3 + 11Q_1$$

$$29Q_3 = 51Q_1$$

$$Q_3 = \frac{51Q_1}{29}$$

$$Q_3 = \frac{51(14.5)}{29}$$

$$Q_3 = \frac{51(14.5)}{29}$$

$$Q_3 = 25.5$$

$$SK_B = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$

$$SK_B = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$

$$= \frac{25.5 + 14.5 - 2(18.5)}{25.5 - 14.5}$$

$$= \frac{40 - 37}{11}$$

$$= \frac{3}{11}$$

$$= 0.27$$

MOMENTS

1. – Central Moments (Moments about mean)

2. – Raw Moments, Moments about arbitrary value A

3. – Convert raw moments or moments about A to central moments

Q1 : MOMENTS ABOUT MEAN (CENTRAL MOMENTS)

01. Find moments about mean for : 5 , 4 , 7 , 6 , 3

x	$x - \overline{x}$	$(x - \overline{x})^2$	$(x - \overline{x})^3$	(x – x) ⁴
3	-2	4	-8	16
4	-1	1	-1	1
5	0	0	0	0
6	1	1	1	1
7	2	4	8	16
x = 5	0	10	0	34
	$\Sigma(X - \overline{X})$	$\Sigma(x - x)^{2}$	$\Sigma (x - x)^3 \overline{\Sigma}$	(x – x) ⁴

CENTRAL	MOMENTS	:

$$\mu_1 = \sum (x - \overline{x}) = 0$$

$${}^{\mu}_{2} = \frac{\Sigma (x - \overline{x})^{2}}{n} = \frac{10}{5} = 2$$

$$\mu_3 = \Sigma (x - \overline{x})^3 = 0$$

$${}^{\mu}_{4} = \sum_{n} \frac{(x - \overline{x})^{4}}{n} = \frac{34}{5} = 6.8$$

MOMENTS ABOUT ARBITRARY VALUE	CENTR (MOMENI	AL MOMENTS 'S ABOUT MEAN)			
$\mu_1(A) = \frac{\Sigma (x - A)}{n}$	μ1 =	$= \frac{\Sigma (x - \overline{x})}{n}$			
$\mu_{2(A)} = \frac{\sum (x - A)^2}{n}$	μ2 =	$= \frac{\Sigma (x - \overline{x})^2}{n}$			
$\mu_{3}(A) = \frac{\sum (x - A)^{3}}{n}$	μ3 -	$= \frac{\Sigma (x - \overline{x})^3}{n}$			
$\mu_4(A) = \frac{\Sigma (x - A)^4}{n}$	μ4 =	$= \frac{\Sigma (x - \overline{x})^4}{n}$			
RAW MOMENTS (MOMENTS ABOUT ORIGIN)					
$\mu_1' = \underline{\Sigma x} ; \mu_2' = \underline{\Sigma x^2} ; \mu_3$	$= \frac{\sum x^3}{n}$; μ_4 ' = $\frac{\Sigma x^4}{n}$			

02. Find moments about mean for : 2 , 4 , 5 , 8 , 11

03.	Find moments	about mean for :	16	, 19,	22,	23 ,	25
-----	--------------	------------------	----	-------	-----	------	----

x	x - x	$(x - \overline{x})^2$	$(x - \overline{x})^{3}$	(x – x) ⁴
2	-4	16	-64	256
4	-2	4	-8	16
5	-1	1	-1	1
8	2	4	8	16
11	5	25	125	625
x = 6	0	50	60	914
	$\Sigma(X - \overline{X})$	$\Sigma(x - x)^{2}$	$\Sigma (x - x)^{3}$	$\Sigma(x - x)^{4}$

CENTRAL MOMENTS :

$$\mu_1 = \Sigma (x - \overline{x}) = 0$$

$$\mu_{2} = \sum_{n} \frac{(x - \overline{x})^{2}}{n} = \frac{50}{5} = 10$$

$${}^{\mu}_{3} = \frac{\Sigma (x - \overline{x})^{3}}{n} = \frac{60}{5} = 12$$

^{$$\mu$$}₄ = $\sum_{n} (x - \overline{x})^4 = \frac{914}{5} = 182.8$

	х	x – x	$(x - \overline{x})^2$	$(x - \overline{x})^{3}$	$(x - \overline{x})^4$
	16	-5	25	-125	625
	19	-2	4	-8	16
	22	1	1	1	1
	23	2	4	8	16
_	25	4	16	64	256
x	= 21	0	50	-60	914
		$\Sigma(x - \overline{x})$	$\Sigma (x - x)^{2^{-1}}$	$\Sigma(x - x)^{3}$	$\Sigma (X - X)^{4}$

CENTRAL MOMENTS :

$$\mu_1 = \Sigma (x - \overline{x}) = 0$$

$${}^{\mu}_{2} = \underline{\Sigma (x - \overline{x})^{2}}_{n} = \underline{50}_{5} = 10$$

$${}^{\mu}_{3} = \frac{\Sigma (x - \overline{x})^{3}}{n} = \frac{-60}{5} = -12$$

$${}^{\mu}_{4} = \sum_{n} (x - \overline{x})^{4} = \frac{914}{5} = 182.8$$

04. Find moments about mean for : -3 , -2 , 0 , 4 , 6

x-1 $(x-1)^2$ $(x-1)^3$ $(x-1)^4$ Х -3 -4 16 -64 256 9 -9 -2 -3 81 1 –1 0 -1 1 9 3 9 81 4 6 5 25 125 625 $\overline{X} = 1$ 60 60 0 1044 $\Sigma(x-1)$ $\Sigma(x-1)^2 \Sigma(x-1)^3 \Sigma(x-1)^4$

CENTRAL MOMENTS :

$$\mu_1 = \Sigma (x - \overline{x}) = 0$$

$${}^{\mu}_{2} = \frac{\Sigma (x - \overline{x})^{2}}{n} = \frac{60}{5} = 12$$

$${}^{\mu}_{3} = \frac{\Sigma (x - \overline{x})^{3}}{n} = \frac{60}{5} = 12$$

$${}^{\mu}_{4} = \frac{\Sigma (x - \overline{x})^{4}}{n} = \frac{1044}{5} = 208.8$$

Q2: MOMENTS ABOUT ARBITRARY VALUE 'A'

01. find moments about A = 5 : 5 , 8 , 7 , 4 , 6

х	x – A	$(x - A)^2$	$(x - A)^3$	$(x - A)^4$
4	-1	1	1 –1	
5	0	0 0		0
6	1	1	1	1
7	2	4	8	16
8	3	9	27	81
A = 5	5	15	35	99
	$\Sigma(x - A)$	$\Sigma(x - A)^2$	$\Sigma(x - A)^3$	$\Sigma(x - A)^2$

MOMENTS ABOUT '5'

$${}^{\mu}_{1(A)} = \frac{\Sigma (x - A)}{n} = \frac{5}{5} = 1$$

$${}^{\mu}_{2(A)} = \frac{\Sigma (x - A)^{2}}{n} = \frac{15}{5} = 3$$

$${}^{\mu}_{3(A)} = \frac{\Sigma (x - A)^3}{n} = \frac{35}{5} = 7$$

^{$$\mu$$}_{4(A)} = $\sum_{n} (x - A)^4 = \frac{99}{5} = 19.8$

02. find moments about A = 5 : 7 , 8 , 6 , 5

х	x – A	$(x - A)^2$	$(x - A)^{3}$	(x - A) ⁴
5	0	0	0	0
6	1	1	1	1
7	2	4	8	16
8	3	9	27	81
A = 5	6	14	36	98
	$\Sigma(X - A)$	$\Sigma(x - A)^2$	$\Sigma(x - A)^3$	$\Sigma (x - A)^4$

MOMENTS ABOUT '5'

$${}^{\mu}_{1}(A) = \frac{\Sigma (x - A)}{n} = \frac{6}{4} = 1.5$$

$${}^{\mu}_{2}(A) = \frac{\Sigma (x - A)^{2}}{n} = \frac{14}{4} = 3.5$$

$${}^{\mu}_{3}(A) = \frac{\Sigma (x - A)^{3}}{n} = \frac{36}{4} = 9$$

$${}^{\mu}_{4}(A) = \Sigma (x - A)^{4} = 98 = 24.5$$

4(A) = $\sum_{n=1}^{\infty} (x - A)^4 = \frac{98}{4} = 24.5$

03. find moments about 20 : 23 , 20 , 19 , 22 , 19

х	x – A	$(x - A)^2$	(x – A) ³	(x - A) ⁴
19	-1	1	1 – 1	
19	-1	1	1 –1	
20	0	0	0	0
22	2	4	4 8	
23	3	9	27	81
A = 5	3	15	33	99
	$\Sigma(X - A)$	$\Sigma(x - A)^2$	$\Sigma(x - A)^3$	$\Sigma(x - A)^4$

MOMENTS ABOUT '20'

^{μ}1(A) = $\sum_{n} (x - A) = \frac{3}{5} = 0.6$

$${}^{\mu}_{2(A)} = \frac{\Sigma (x - A)^{2}}{n} = \frac{15}{5} = 3$$

^{μ}_{3(A)} = $\sum_{n} \frac{(x - A)^3}{n} = \frac{33}{5} = 6.6$

^µ4(A) =
$$\sum_{n} (x - A)^4 = \frac{99}{5} = 19.8$$

04.	find raw	moments for	:	-3,	-2		1	. 3	. 4
• • • •			•	• ,	-	'	•	, .	, .

x	x ²	x ³	x ⁴	_
-3	9	-27	81	
-2	4	- 8	16	
1	1	1	1	
3	9	27	81	
4	16	64	256	
3	39	57	435	
Σχ	Σx^2	Σx^3	Σx^4	

CONVERSION OF MOMENTS ABOUT ARBITRARY VALUE / RAW MOMENTS TO CENTRAL MOMENTS

 $\mu_4 = \mu_4(\alpha) - 4 \mu_1(\alpha) \cdot \mu_3(\alpha) + 6 \mu_2(\alpha) \cdot \mu_1(\alpha)^2 - 3 \mu_1(\alpha)^4$

 $\mu_1 = 0$

 $\mu_2 = \mu_2(a) - \mu_1(a)^2$

 $\mu_3 = \mu_3(\alpha) - 3 \mu_1(\alpha) \cdot \mu_2(\alpha) + 2 \mu_1(\alpha)^3$

RAW MOMENTS :

$$\mu'_1 = \sum_{n=1}^{\infty} x = 3 = 0.6$$

$$\frac{\mu'_{2}}{n} = \frac{\Sigma}{n} \frac{x^{2}}{5} = \frac{39}{5} = 7.8$$

$${}^{\mu'3} \qquad = \sum_{n} x^{3} = 57 = 11.4$$

$$\frac{\mu'_4}{n} = \sum_{n} x^4 = \frac{435}{5} = 87$$

NOTE :

 $\mu_{1(\alpha)} = \overline{x} - A$

VARIANCE = $\sigma^2 = \frac{\Sigma (x - x)^2}{n} = \mu_2$

01.	moments about 5 : 2 , 10 , 50 , 230 C Find central moments		 first four raw moments: 2 , 20 , 40 , 50 Find central moments 		
	SOLUTION :		SOLUTION :		
23	A = 5; $\mu_1(\alpha)$ = 2; $\mu_2(\alpha)$ = 10; $\mu_3(\alpha)$ = 50; $\mu_4(\alpha)$ = 30	$A = 0; \mu_{1}(\alpha) = 2; \mu_{2}(\alpha) = 20; \mu_{3}(\alpha) = 40; \mu_{4}(\alpha) = 50$			
	$\mu_{1} = 0$ $\mu_{2} = \mu_{2}(\alpha) - \mu_{1}(\alpha)^{2}$ $= 10 - (2)^{2}$ = 10 - 4 = 6		$\mu_{1} = 0$ $\mu_{2} = \mu_{2}(\alpha) - \mu_{1}(\alpha)^{2}$ $= 20 - (2)^{2}$ = 20 - 4 = 16	TO AVOID MANY NOTATIONS IN THIS SUM WE HAVE CALLED μ_1 (a) INSTEAD OF μ_1 ' AND SO ON HOWEVER WE HAVE MENTIONED A=0 SO THAT READER UNDERSTANDS THAT THEY ARE RAW MOMENTS	
	$\mu_{3} = \mu_{3}(\alpha) - 3 \mu_{1}(\alpha) \cdot \mu_{2}(\alpha) + 2 \mu_{1}(\alpha)^{3}$ = 50 - 3(2)(10) + 2(2)^{3} = 50 - 60 + 16 = 6		$\mu_3 = \mu_3(a) - 3 \mu_1(a) \cdot \mu_2(a)$ = 50 - 3(2)(20) = 40 - 120 = -64	+ $2 \mu_1(\alpha)^3$ + $2(2)^3$ + 16	
	$\mu_{4} = \mu_{4}(\alpha) - 4 \mu_{1}(\alpha) \cdot \mu_{3}(\alpha) + 6 \mu_{2}(\alpha) \cdot \mu_{1}(\alpha)^{2} - 3 \mu_{1}(\alpha)^{4}$ $= 230 - 4(2)(50) + 6(10)(2)^{2} - 3(2)^{4}$ $= 230 - 400 + 240 - 48$ $= 470 - 448$ $= 22$		$\mu_{4} = \mu_{4}(\alpha) - 4 \mu_{1}(\alpha) \cdot \mu_{3}(\alpha)$ = 50 - 4(2)(40) = 50 - 320 = 530 - 368 = 162	+ $6 \mu_2(\alpha) \cdot \mu_1(\alpha)^2 - 3 \mu_1(\alpha)^4$ + $6(20)(2)^2 - 3(2)^4$ + $480 - 48$	
	$ \mu_{1}(\alpha) = \overline{x} - A $ $ 2 = \overline{x} - 5 $ $ \overline{x} = 7 $		$\mu_{1}(\alpha) = \overline{x} - A$ $2 = \overline{x} - 0$ $\overline{x} = 2$		

03. first four raw moments: 2 , 7 , 20 , 76

Find central moments

SOLUTION :

A = 0;
$$\mu_1(\alpha) = 2$$
; $\mu_2(\alpha) = 7$; $\mu_3(\alpha) = 20$; $\mu_4(\alpha) = 76$
A = 0; $\mu_1(\alpha) = 2$; $\mu_2(\alpha) = 7$; $\mu_3(\alpha) = 20$; $\mu_4(\alpha) = 76$
A = 0; $\mu_1(\alpha) = 2$; $\mu_2(\alpha) = 7$; $\mu_3(\alpha) = 20$; $\mu_4(\alpha) = 76$
A = 0; $\mu_1(\alpha) = 2$; $\mu_1(\alpha) = 2$; $\mu_2(\alpha) = 16$; $\mu_3(\alpha) = 40$
Find mean : variance and third central moment
SOLUTION :
A = 2; $\mu_1(\alpha) = 1$; $\mu_2(\alpha) = 16$; $\mu_3(\alpha) = 40$
 $\mu_1 = 0$
 $\mu_1 = 0$
 $\mu_1 = 0$
 $\mu_1 = 0$
 $\mu_2 = \mu_2(\alpha) - \mu_1(\alpha)^2$
 $= 20 - 3(2)(7) + 2(2)^3$
 $= 20 - 42 + 16$
 $= -6$
 $\mu_4 = \mu_4(\alpha) - 4\mu_1(\alpha), \mu_3(\alpha) + 6\mu_2(\alpha), \mu_1(\alpha)^2 - 3\mu_1(\alpha)^4$
 $= 76 - 4(2)(20) + 6(7)(2)^2 - 3(2)^4$
 $= 76 - 160 + 168 - 48$
 $= 244 - 208$
 $= 36$
 $\mu_1(\alpha) = \overline{x} - A$
 $\mu_2 = 2$
 $\mu_3 = 2$
 $\mu_3 = 2$
 $\mu_4 = -6$
 $\mu_4 = \mu_4(\alpha) - 4\mu_1(\alpha), \mu_3(\alpha) + 6\mu_2(\alpha), \mu_1(\alpha)^2 - 3\mu_1(\alpha)^4$
 $= 76 - 160 + 168 - 48$
 $\mu_1(\alpha) = \overline{x} - A$
 $\mu_2 = 2$

05. first 3 moments about 7 calculated from a set of 9 observations are 0.2 ; 19.4 and -41 respectively . Find the mean , variance and the second raw moment of the distribution

SOLUTION :

A = 7 :
$$\mu_1(\alpha)$$
 = 0.2 ; $\mu_2(\alpha)$ = 19.4 ; $\mu_3(\alpha)$ = -41
 μ_1 = 0
 μ_2 = $\mu_2(\alpha) - \mu_1(\alpha)^2$
= 19.4 - (0.2)²
= 19.4 - 0.04
= 19.36 VARIANCE = μ_2 = 19.36

$$^{\mu}1(a) = \overline{x} - A$$

 $0.2 = \overline{x} - 7$
 $\overline{x} = 7.2$ MEAN = 7.2

VARIANCE = 19.36 $\sigma^{2} = 19.36$ $\frac{\Sigma x^{2} - x^{2}}{n} = 19.36$ $\frac{\Sigma x^{2} - (7.2)^{2}}{n} = 19.36$ $\Sigma x^{2} - 51.84 = 19.36$

 $\frac{\Sigma x^2}{n} = 51.84 = 19.36$ SECOND RAW MOMENT $\frac{\Sigma x^2}{n} = 71.2 \qquad \qquad \mu_2' = \Sigma x^2 = 71.2$

KURTOSIS

- The peakedness of a distribution is known as KURTOSIS .
- Pearsonian coefficients β_2 and γ_2 measures the kurtosis of the distribution

•
$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$
 & $\gamma_2 = \beta_2 - 3$

Q1. the first four moments about 4 are 1, 4, 10, 46. Find
 Q2. the first four moments about 4 are -1, 17, -30, 308. Find

 Personian's coefficients of kurtosis
 SOLUTION :

$$A = 4 : \mu_1(\alpha) = 1 : \mu_2(\alpha) = 4 : \mu_3(\alpha) = 10 : \mu_4(\alpha) = 46$$
 $A = 4 : \mu_1(\alpha) = -1 : \mu_2(\alpha) = 4 : \mu_3(\alpha) = 10 : \mu_4(\alpha) = 46$
 $A = 4 : \mu_1(\alpha) = -1 : \mu_2(\alpha) = -30 : \mu_4(\alpha) = 308$
 $\mu_2 = \mu_2(\alpha) - \mu_1(\alpha)^2$
 $A = 4 : \mu_1(\alpha) = -1 : \mu_2(\alpha) = 17 : \mu_3(\alpha) = -30 : \mu_4(\alpha) = 308$
 $\mu_2 = \mu_2(\alpha) - \mu_1(\alpha)^2$
 $A = 4 : \mu_1(\alpha) = -1 : \mu_2(\alpha) = 17 : \mu_3(\alpha) = -30 : \mu_4(\alpha) = 308$
 $\mu_3 = \mu_3(\alpha) - \mu_1(\alpha)^2$
 $= 17 - (-1)^2$
 $= 3$
 $= 16$
 $\mu_3 = \mu_3(\alpha) - 4 \mu_1(\alpha) \cdot \mu_3(\alpha) + 6 \mu_2(\alpha) \cdot \mu_1(\alpha)^2 - 3 \mu_1(\alpha)^4$
 $= 46 - 4(1)(10) + 6(4)(1)^2 - 3(1)^4$
 $= 46 - 40 + 24 - 3$
 $= 27$
 $\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{27}{(3)^2} = 3$
 $\gamma_2 = \beta_2 - 3 = 3 - 3$
 $= 0$
 $\gamma_2 = \beta_2 - 3 = 3 - 3$
 $= 0$
 $\gamma_2 = \beta_2 - 3 = 3 - 3$
 $= 0$
 $\gamma_2 = \beta_2 - 3 = 3 - 3$
 $= 0$
 $\gamma_2 = \beta_2 - 3 = 3 - 3$

28

4; $\mu_1(\alpha) = -1$; $\mu_2(\alpha) = 17$; $\mu_3(\alpha) = -30$; $\mu_4(\alpha) = 308$

 $\mu_4(a) = 4 \mu_1(a) \cdot \mu_3(a) + 6 \mu_2(a) \cdot \mu_1(a)^2 - 3 \mu_1(a)^4$ 308 - 4(-1)(-30) + 6(17)(-1)² - 3(-1)⁴

 $= {}^{\mu}_{3}(a) - {}^{3}_{\mu}{}^{\mu}_{1}(a) . {}^{\mu}_{2}(a) + {}^{2}_{\mu}{}^{\mu}_{1}(a)^{3}$

308 - 120 + 102 - 3

NOT REQUIRED

 $\frac{\mu_4}{\mu_2^2} = \frac{287}{(16)^2} = \frac{287}{256} = 1.12$

 $\mu_{2(a)} - \mu_{1(a)}^{2}$ $17 - (-1)^2$

410 - 123

 $\beta_2 - 3 = 1.12 - 3$

= -1.88

287

16

Q3. the first four raw moments about origin are 2 , 20 , 40 , 800 . Find Personian's coefficients of kurtosis

SOLUTION :

$$A = 0; \ \mu_{1}(\alpha) = 2; \ \mu_{2}(\alpha) = 20; \ \mu_{3}(\alpha) = 40; \ \mu_{4}(\alpha) = 800$$

$$RAW MOMENTS$$

$$\mu_{2} = \mu_{2}(\alpha) - \mu_{1}(\alpha)^{2}$$

$$= 20 - (2)^{2}$$

$$= 20 - 4$$

$$= 16$$

$$\mu_{3} = \mu_{3}(\alpha) - 3 \mu_{1}(\alpha) \cdot \mu_{2}(\alpha) + 2 \mu_{1}(\alpha)^{3}$$
NOT REQUIRED
$$\mu_{4} = \mu_{4}(\alpha) - 4 \mu_{1}(\alpha) \cdot \mu_{3}(\alpha) + 6 \mu_{2}(\alpha) \cdot \mu_{1}(\alpha)^{2} - 3 \mu_{1}(\alpha)^{4}$$

$$= 800 - 4(2)(40) + 6(20)(2)^{2} - 3(2)^{4}$$

$$= 800 - 320 + 480 - 48$$

$$= 1280 - 368$$

$$= 912$$

$$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{912}{(16)^{2}} = \frac{912}{256} = 3.56$$

$$\gamma_{2} = \beta_{2} - 3 = 3.56 - 3$$

$$= 0.56 > 0$$

COMMENT

DISTRIBUTION IS LEPTOKURTIC

Q4. if $\mu_2 = 16$ & $\mu_4 = 1024$. Find Personian coefficient of Kurtosis SOLUTION $\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{1024}{(16)^2} = \frac{1024}{256} = 4$ $\gamma_2 = \beta_2 - 3 = 4 - 3$ = 1 > 0 COMMENT DISTRIBUTION IS LEPTOKURTIC Q5. if $\mu_2 = 4$ & $\gamma_2 = -0.4$. Find μ_4 SOLUTION $\gamma_2 = \beta_2 - 3$ $-0.4 = \beta_2 - 3$ $\beta_2 = 2.6$ $\beta_2 = \frac{\mu_4}{\mu_2^2}$ 2.6= $\frac{\mu_4}{(4)^2}$ $\mu_4 = 41.6$

Q6. if $\mu_4 = 108$ Find μ_2 if the distribution is MESOKURTIC

SOLUTION

Since the distribution is MESOKURTIC , $\beta_2 = 3$

$$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}}$$

$$3 = \frac{108}{\mu_{2}^{2}}$$

$$\mu_{2}^{2} = 36 \qquad \therefore \quad \mu_{2}^{2} = 6$$

Q7. If SD = 2. Comment on KURTOSIS if
$$\mu_4$$

a) 50 b) 44 c) 48

SOLUTION

$$^{\mu}2 = \sigma^2 = 4$$

a) $\mu_2 = 4$; $\mu_4 = 50$

$$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{50}{(4)^2} = 3.125$$

 $\gamma_2 = \beta_2 - 3 = 3.125 - 3$

= 0.125 > 0 ; DISTRIBUTION IS LEPTOKURTIC

b)
$$\frac{\mu_{2}}{\mu_{2}} = 4; \quad \mu_{4} = 44$$

$$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{44}{(4)^{2}} = 2.75$$

$$\gamma_{2} = \beta_{2} - 3 = 2.75 - 3$$

$$= -0.25 < 0 ; \quad \text{DISTRIBUTION IS PLATYKURTIC}$$

c)
$$\frac{\mu_{2}}{\mu_{2}} = 4; \quad \mu_{4} = 48$$

$$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{48}{(4)^{2}} = 3$$

$$\gamma_{2} = \beta_{2} - 3 = 3 - 3$$

$$= 0 ; \quad \text{DISTRIBUTION IS MESOKURTIC}$$